Exemplar Problem

Sequence and Series

14. If θ_1 , θ_2 , θ_3 , ..., θ_n are in A.P., whose common difference is d, show that Sec θ_1 sec θ_2 + sec θ_2 sec θ_3 + ... + sec θ_{n-1} sec θ_n

$$=\frac{\tan\theta_n-\tan\theta_1}{\sin d}.$$

Solution:

Given $\theta_1,\,\theta_2,\,\theta_3,\,...,\,\theta_n$ are in A.P., and common difference is d,

Now we have to prove that

$$\text{Sec }\theta_1 \text{ sec }\theta_2 + \text{sec }\theta_2 \text{ sec }\theta_3 + ... + \text{sec }\theta_{n-1} \text{ sec }\theta_n = \frac{\tan\theta_n - \tan\theta_1}{\sin d}$$

On cross multiplication we get

$$\Rightarrow$$
 Sin d (sec θ_1 sec θ_2 + sec θ_2 sec θ_3 + ... + sec θ_{n-1} sec θ_n) = tan θ_n - tan θ_1

We know sec $x = 1/\cos x$ using this formula we get

$$\Rightarrow \frac{\sin d}{\cos \theta_1 \cos \theta_2} + \frac{\sin d}{\cos \theta_2 \cos \theta_3} + \dots + \frac{\sin d}{\cos \theta_{n-1} \cos \theta_n} = \tan \theta_n - \tan \theta_1$$

Consider LHS

$$\Rightarrow \text{LHS} = \frac{\sin d}{\cos \theta_1 \cos \theta_2} + \frac{\sin d}{\cos \theta_2 \cos \theta_3} + \dots + \frac{\sin d}{\cos \theta_{n-1} \cos \theta_n}$$

Now we have to find value of d in terms of θ so that further simplification can

he made

As $\theta_1,\,\theta_2,\,\theta_3,\,...,\,\theta_n$ are in AP having common difference as d

Hence

$$\theta_2 - \theta_1 = d$$
, $\theta_3 - \theta_2 = d$, ..., $\theta_n - \theta_{n-1} = d$

Take sin on both sides

Sin $(\theta_2 - \theta_1)$ = sin d, sin $(\theta_3 - \theta_2)$ = sin d, ..., sin $(\theta_n - \theta_{n-1})$ = sin d

Substitute appropriate value of sin d for each term in LHS

$$\Rightarrow \text{LHS} = \frac{\sin(\theta_2 - \theta_1)}{\cos\theta_1 \cos\theta_2} + \frac{\sin(\theta_3 - \theta_2)}{\cos\theta_2 \cos\theta_3} + \dots + \frac{\sin(\theta_n - \theta_{n-1})}{\cos\theta_{n-1} \cos\theta_n}$$

We know that $\sin (a - b) = \sin a \cos b - \cos a \sin b$

Using this formula we get

$$\Rightarrow \text{LHS} = \frac{\sin\theta_2 \cos\theta_1 - \cos\theta_2 \sin\theta_1}{\cos\theta_1 \cos\theta_2} + \frac{\sin\theta_3 \cos\theta_2 - \cos\theta_3 \sin\theta_2}{\cos\theta_2 \cos\theta_3} + \cdots \\ + \frac{\sin\theta_n \cos\theta_{n-1} - \cos\theta_n \sin\theta_{n-1}}{\cos\theta_{n-1} \cos\theta_n}$$

On simplifying we get

$$\begin{split} &= \frac{\sin\theta_2 \cos\theta_1}{\cos\theta_1 \cos\theta_2} - \frac{\cos\theta_2 \sin\theta_1}{\cos\theta_1 \cos\theta_2} + \frac{\sin\theta_3 \cos\theta_2}{\cos\theta_2 \cos\theta_3} - \frac{\cos\theta_3 \sin\theta_2}{\cos\theta_2 \cos\theta_3} + \dots + \frac{\sin\theta_n \cos\theta_{n-1}}{\cos\theta_{n-1} \cos\theta_n} \\ &- \frac{\cos\theta_n \sin\theta_{n-1}}{\cos\theta_{n-1} \cos\theta_n} \end{split}$$
 We know that $\sin x/\cos x = \tan x$
$$&= \tan\theta_2 - \tan\theta_1 + \tan\theta_3 - \tan\theta_2 + \dots + \tan\theta_n - \tan\theta_{n-1} \\ &= -\tan\theta_1 + \tan\theta_n \\ &= \tan\theta_n - \tan\theta_1 \\ \Rightarrow \text{LHS} = \text{RHS} \end{split}$$
 Hence proved